
 

 
 

 
(Q)SAR Model Reporting Format (QMRF) for iSafeRat® In Vitro Endocrine 

Modalities Prediction by SVM for thyroid receptors agonism/antagonism – 

iVEMPS - THR v1.0 
 

1 QSAR identifier 

1.1  QSAR identifier (title)   

QSAR Model Reporting Format (QMRF) for iSafeRat® iVEMPS – THR model v1.0. 

 

1.2  Other related models  

No other related models. 
 

1.3  Software coding the model 

Language: Python (3.12.2)  
Main libraries used:   

• RDKit (2024.09.2)1 

• pandas (2.2.2) 

• matplotlib (3.9.2) 

• scikit-learn (1.5.1) 

• PyBioMed (1.0) 
 

2 General information 

2.1  Abstract  

The iSafeRat® iVEMPS – THR model was developed to identify whether a mono-constituent organic substance 
can have an agonistic or antagonistic interaction with thyroid receptors alpha and beta. 

This model is based on curated and knowledge expert-validated data from the TOX21 dataset available from US 
EPA Comptox Chemicals Dashboard2 as well as from the BindingDB database3. Active or inactive results are 
generated from high-throughput in vitro screening studies, based on the principle of receptor transactivation 
with a reporter gene4. 

From the expert-curated data, a dataset consisting of 6,340 substances was compiled. This dataset was then 
divided into training, validation, and external validation sets while ensuring homogeneity across all three 
subsets. To account for structural similarity, the dataset was first clustered using the BUTINA method, and 
subsequently, within each cluster, molecules were assigned to the training, validation, and external validation 
sets using the Kennard-Stone method. The dataset consists of compounds from many different chemical 
families. Given this diversity, the structural space is very scattered, meaning that there are many substances in 
the dataset with no or few close analogues, within both the active and inactive classes. Furthermore, the dataset 
is highly imbalanced, with over 95% of the substances classified as inactive (i.e., neither agonists nor antagonists 
up to the cytotoxicity limit), and only 5% classified as active (i.e., either agonists or antagonists). 

To address the class imbalance in the dataset, a Support Vector Machine (SVM) model utilizing circular 
fingerprints (FCFP6) was developed to classify substances into two categories: active (agonists or antagonists) 
and inactive (non-agonists and non-antagonists). This approach adapts to the specific challenges posed by the 
highly imbalanced dataset, as it provides a more effective way to separate the data points despite the 
disproportionate representation of active and inactive classes. 

The model was trained on a dataset of 3,344 substances, with an internal validation set consisting of 1,184 
substances and an external validation set of 1,812 substances. After optimizing the model’s parameters, the 
SVM model demonstrated strong performance on the training set, achieving the following metrics for the active 
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class: precision of 95% and sensitivity of 98%. For the inactive class, the model achieved 100% precision and 
100% specificity, indicating the model’s effectiveness in identifying inactive compounds. 

Next, an applicability domain was defined based on the structural features of the substances in the training set. 
Molecules from the validation and external validation sets that fell outside the applicability domain were 
excluded from further analysis. This ensures that predictions are made only for substances within the defined 
chemical space, increasing the reliability of the model. 

The final evaluation on the external validation set revealed the following performance metrics: for the active 
class, the model achieved 92% precision and 98% sensitivity, while for the inactive class, it attained 99% precision 
and 99% specificity. These results validate the model’s ability to predict molecular interactions with thyroid 
receptors (agonism and/or antagonism), or the absence of such activities, within its applicability domain.  

2.2  Date of QMRF  

17 January 2025 
 

2.3  Date of QMRF update(s)  

Table 1: Dates of QMRF updates. 

Date QMRF update identifier 

17 January 2025 KTS/QMRF/ETR/01 

 

2.4  QMRF update(s)  

Table 2: Contents of QMRF updates. 

(Q)PRF update identifier Content 

KTS/QMRF/ETR/01 First version of QMRF for this model 

 

2.5  Model developer(s) and contact details  

Dr. Emel Ay-Albrecht, Dr. Franklin Bauer, Dr. Zlatomir Todorov 
KREATiS SAS, 
ZAC Saint Hubert 
23 rue du Creuzat 
38080 L’ISLE D’ABEAU 
France 
Tel: +33 (0)6 46 46 42 33 
Email: contact@kreatis.eu 
Website: www.kreatis.eu 
 

2.6  Date of model development and/or publication  

The results presented in this QMRF refer to the version of the iSafeRat® iVEMPS – THR model v1.0 generated 
internally on 21 October 2024.  
 

2.7  Reference(s) to main scientific papers and/or software package  

 
US EPA (2024). CompTox Chemicals Dashboard. CompTox Chemicals Dashboard v2.5.0. 
https://comptox.epa.gov/dashboard/. 

Gilson, M.K., and Liu, T. (2023). BindingDB: Measured Binding Data for Protein-Ligand and Other Molecular 
Systems. (UC San Diego Library Digital Collections). https://doi.org/10.6075/J0HD7VVF. 

Freitas, J., Cano, P., Craig-Veit, C., Goodson, M.L., David Furlow, J., and Murk, A.J. (2011). Detection of thyroid 
hormone receptor disruptors by a novel stable in vitro reporter gene assay. Toxicology in Vitro, 25, 257–266. 
https://doi.org/10.1016/j.tiv.2010.08.013. 

Landrum, G. (2024). RDKit. Version 2024.09.2. https://www.rdkit.org/   

http://www.kreatis.eu/
https://comptox.epa.gov/dashboard/
https://doi.org/10.6075/J0HD7VVF
https://doi.org/10.1016/j.tiv.2010.08.013
https://www.rdkit.org/
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2.8  Availabil ity of information about the model  

The model is proprietary but limited information has been made publicly available for the validation/external 
validation set. Any queries concerning the model, or its validity should be addressed to contact@kreatis.eu. 
Furthermore, KREATiS undertakes to provide supplementary information to sponsors or regulatory authorities 
upon request to demonstrate compliance of our QSARs with good practice. 
 

2.9  Availabil ity of another QMRF for exactly the same model 

None. 
 

3 Defining the endpoint - OECD Principle 1   

3.1  Species  

Wistar Rat (Rattus norvegicus) 
 

3.2  Endpoint  

Interaction with thyroid receptors (agonism or antagonism), as could be measured in an in vitro assay on rat 
pituitary tumor GH3 cell line transfected with a luciferase reporter gene, as described by Freitas et al., 20114. 
 

3.3  Comment on endpoint  

Agonist endpoint and antagonist endpoint were regrouped as the unique “active” class for the purpose of this 
model, since this distinction was not available from BindingDB data, though it was available from TOX21 data. 
 

3.4  Endpoint units  

No unit. 
 

3.5  Dependent variable  

Presence or absence of interaction (agonistic or antagonistic) with thyroid receptor, which is formalised as “1” 
(active) or “0” (inactive) in the dataset, respectively. 
 

3.6  Experimental protocol  

In the TOX21 dataset, only the following assays have been used for this model: 

• TOX21_TR_LUC_GH3_Agonist 

• TOX21_TR_LUC_GH3_Antagonist  

• TOX21_TR_LUC_GH3_Agonist 

• TOX21_TR_LUC_GH3_Antagonist_viability 
The testing protocol of these high-throughput assays is as follows: 
A stable luciferase reporter gene assay was developed based on the thyroid hormone responsive rat pituitary 
tumor GH3 cell line that constitutively expresses both thyroid hormone receptor isoforms. Stable transfection 
of the pGL4CP-SV40-2xtaDR4 construct into the GH3 cells resulted in a highly sensitive cell line (GH3.TRE-Luc). 
GH3.TRE-Luc cells were incubated for 28h in the presence (for antagonism detection) or absence (for agonism 
detection) of T3, with or without the indicated test chemical in DMSO. The DMSO concentration was always the 
same for all exposures within an experiment and always kept 60.5% (v/v) to avoid cytotoxicity4.  
Gene transcription subsequent to thyroid receptor activation was monitored by the activity of the transcripted 
Luciferase. The bioluminescence signals were detected by CellTiter-Glo Luciferase-coupled ATP quantitation 
technology, on lysed cells in a microplate luminometer with two injectors (Thermo LabSystems luminoskan 
Ascent). Changes to bioluminescence signals produced from an enzymatic reaction involving the key substrate 
[One-Glo] are indicative of changes in transcriptional gene expression due to agonist or antagonist activity 
regulated by the human thyroid hormone receptor alpha, and thyroid hormone receptor beta [GeneSymbol: 
THRA & THRB | GeneID:7067 & 7068 | Uniprot_SwissProt_Accession:P10827 & P10828]2. 
Cell viability in each well was determined by measuring Luciferase bioluminescence as a function of ATP content 
in the cell (since ATP is a required cofactor of Luciferase), since dying or dead cells stop producing ATP2. 
All exposures were performed in triplicate. 
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On the dose–response curves, percentages of maximal luciferase induction for each test compound were 
calculated by setting luciferase response to solvent control (DMSO) as 0% and the maximum luciferase induction 
by 10 nM T3 as 100%4. 
 
BindingDB was used to augment the iVEMPS training dataset with functionally active entries. Data within 
BindingDB is gathered upon manual curation of articles in selected scientific journals and US patents (no further 
data quality curation was made internally). It lists quantitative values of the activity and/or the affinity from in 
vitro experiments involving compounds and target proteins. 
 

3.7  Endpoint data quality and variability  

All data from TOX21 dataset have been tested with the same protocol and the resulting data have been 
processed the same way by US EPA tcpl workflow.  
The TOX21 dataset has been automatically curated by KREATiS and then the remaining actives were further 
validated by KREATiS experts. The automatic curation of TOX21 data consisted of several steps, summarised 
here: 

1. Search of SMILES codes from PubChem using InChI keys when SMILES code was not provided or invalid 
in the TOX21 database. 

2. Standardisation of SMILES codes. 
3. Removal of substances without a SMILES code. 
4. Removal of substances that are multi-constituents. 
5. Comparison of activity curves with cytotoxicity curves. If activity does not start at a significantly lower 

concentration than cytotoxicity, it is reassigned as “not active up to the cytotoxicity limit” or more 
simply “inactive”. Confirmed actives were labelled as “active”. 

The following curation has been applied to BindingDB data: 
1. To be consistent with TOX21 data, only the results expressed as EC50 and IC50 have been kept for this 

work, which is assumed to come only from in cellulo assays. 
2. Results reported as censored values (e.g. EC50 > 10 µM) have been excluded. 
3. Only the active data with an EC50 or IC50 lower than 100 nM have been kept for this work to avoid 

using so-called active data with low affinity that can easily be confounded with cytotoxicity effects. 
 
Finally, after merging the data from TOX21 and BindingDB, a final step has been carried out: 

1. If there are several samples tested for a same substance and which resulted in different outcomes 
(active/inactive), the substance has been removed from the dataset. 

 

Dataset preparation: 
More detailed description of the data preparation procedure, summarised above, follows. 
 
Standardization of chemical structure description: 
Within the retrieved database identifiers (DTXSID, n = 9,403) from InvitroDB v3-3, not all of the associated 
compounds were successfully described in silico by unambiguous SMILES code. Available SMILES were 
standardized by removal of salt, stereochemistry was simplified and selection of a single converging tautomeric 
state was carried. Hence, alternative SMILES codes for the same compound were removed, resulting in 8,282 
standardized SMILES allowing to describe  (after salt removal) 7,155 mono-constituent  and 1,816 multi-
constituent substances. 
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Functional dataset curation: 
The functional dataset TOX21_TR_LUC_GH3 from InvitroDB v3-3, was curated based on the methodology 
described elsewhere (The Thyroid Tox NC3Rs project. Not published yet). In brief, functional data classified as 
“Active” through binding on Thyroid Hormone Receptor was declassified to “Not active” if the activity threshold 
is very close to or above the observed cytotoxicity. Furthermore, compounds associated with conflicting 
functional classes assigned from repeated in vitro tests were removed from the reference dataset. 

 

Linking structural descriptions and functional data: 
As a matter of fact, not all substances associated with unambiguous functionality from TOX21 were successfully 
represented in silico with a standardized SMILES according to the procedure described in the text above. The 
product of both procedures “Standardization of chemical structure description” and “Functional dataset 
curation”, resulted in the following counts: 

 

Dataset augmentation: 
BindingDB data was used to bring additional “Active” compounds to the reference dataset. Data extraction 
involved selection for human Thyroid Hormone Receptor binding, and only mono-constituent compounds with 
reported EC50 or IC50 <0.1 µM (assumed high affinity, without further curation) were selected. Further on, the 
SMILES standardization procedure as described for the TOX21 dataset was applied. The resulting set of 
compounds (243 compounds) was merged with the already prepared reference dataset. 
 

4 Defining the algorithm - OECD Principle 2 

4.1  Type of model 

Support Vector Machine (SVM) Model  
 

4.2  Explicit method 

Dataset preparation: 
Dataset splitting: 
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The dataset splitting into training, validation and external validation sets proceeded according to a sophisticated 
procedure aiming to achieving homogeneity across the 3 subsets given the chemical diversity of the input. The 
approach ensures balancing the active and inactive classes within the subsets, but also tends to balance how the 
various chemical families are distributed within the 3 subsets. 

 

Additional filtering of the reference dataset: 
Reference compounds associated with mono-constituent SMILES were preserved. All compounds containing 

atoms outside the following list were removed: allowed atoms Li, Be, C, N, O, F, Na, Mg, P, S, Cl, K, Ca, Se, 
Br, I. Moreover, in the final reference dataset the distinction between Agonistic and Antagonistic activity was 

ignored and replaced by “Active” (“Positive”) and “Inactive” (“Negative”). This was due to the low number of 
active datapoints describing the Agonistic activity, and it was assumed that this could lead to difficulties of 
training an efficient “Agonist” model. 
The final distribution of the reference database among the Train and External validation subsets is as follows 
(~10% of the Training subset were used as Validation subset): 

 

 

Model description and optimisation parameters:  
The model predicts whether a substance is active (agonist or antagonist to thyroid receptors) or inactive. This 
prediction is based on molecular fingerprints, which describe the structure of the molecules. It was built using a 
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training dataset of 3,344 samples and an internal validation set of 1,184 samples. The dataset is highly 
imbalanced, with 95% of the data representing inactive classes and only 5% representing active classes. 
Additionally, the structural space is very scattered, meaning that there are many substances in the dataset with 
no or few close analogues, within both the active and inactive classes. 
To optimize the model, GridSearchCV from Scikit-learn5, a widely used machine learning library for Python, was 
applied. This method performs an exhaustive search over a predefined parameter grid using cross-validation to 
identify the optimal hyperparameters, enhancing model performance and generalization. The optimization 
process included testing different types of molecular fingerprints, such as substructure-based fingerprints (e.g., 
PubChem and MACCS keys) and circular fingerprints (e.g., Feature-Class Fingerprints FCFP6 and Extended-
Connectivity Fingerprints ECFP6)6. The best results were achieved using circular fingerprints (FCFP6) as input 
features. 
SVM was chosen for several key reasons: it is well-suited for medium-sized datasets and performs effectively in 
high-dimensional spaces, such as those generated by molecular fingerprints. SVM also handles class imbalance 
through techniques like class weighting, and its kernel flexibility allows it to generalize well to both linearly and 
non-linearly separable data. 
 
 A Support Vector Machine (SVM)7,8  is a machine learning algorithm that finds the best boundary (called a 
hyperplane) to separate data points into different classes. The goal is to maximize the space, or margin, between 
the closest points of each class (called support vectors), making the model better at predicting new, unseen 
data. SVM can handle both simple and complex data by using kernel functions. These kernels transform the data 
into a higher-dimensional space where it becomes easier to separate the classes, even if they’re not linearly 
separable in the original space. 

In the present model, the following key parameters were fine-tuned using grid search: 

• C = 0.1: This parameter controls how much the model allows for errors during training. By setting C to 
a lower value, the model focuses on creating a wider margin between the classes, even if it means 
misclassifying some points. This helps avoid overfitting and makes the model more general. 

• Gamma = 0.001: Gamma determines data driven how much influence a single data point has on the 
boundary. Gamma is mostly critical for kernels like RBF (used for non-linear data). 

• Kernel = 'linear': A linear kernel means the model tries to separate the data with a straight line (or a 
flat plane in higher dimensions).  

By carefully tuning these parameters, the model achieves a good balance between simplicity, accuracy, and 
generalization to new data. 

4.3  Descriptors in the model 

In this model, FCFP6 (Feature-Class Fingerprints)6, represented as 1024-bit binary vectors, were used as 
descriptors. These fingerprints capture the functional features of molecules and are essential for classification 
tasks based on molecular similarity. 

FCFP6 fingerprints are widely used in cheminformatics because they are  data driven.  FCFP6 fingerprints are 
generated dynamically. They focus on the functional groups attached to atoms, allowing them to capture a 
broader range of functional features compared to traditional fingerprints. 

These fingerprints encode the chemical environment around each atom, especially emphasizing the functional 
groups, making them highly effective for understanding biological and chemical interactions. Their adaptability 
allows them to represent complex and diverse chemical environments, which predefined methods may not 
cover. 

FCFP6 fingerprints are particularly well-suited for tasks like molecular similarity assessment, clustering, and 
predictive modelling. Their ability to represent molecular data comprehensively ensures accurate classification 
based on structural and functional similarities. 
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4.4  Descriptor selection  

To optimise the model, grid search method was applied, testing different types of molecular fingerprints such 
as PubChem, MACCS key, and circular fingerprints. The best results were achieved using circular fingerprints 
(FCFP6) as input features. 
 

4.5  Algorithm and descriptor generation  

The FCFP6 fingerprints are generated using RDKit1, specifically through the rdFingerprintGenerator class and 
the GetMorganGenerator() method, with atom invariants enabled to capture the atomic features. 

FCFP6 (Functional-Class Extended-Connectivity Fingerprints) is an algorithm that generates molecular 
fingerprints focusing on the functional groups attached to atoms, in addition to atomic connectivity. Below is a 
summary of the key steps in the algorithm: 

1. Initialization: Each atom is assigned an initial fingerprint based on its atomic number, hybridization 
state, and relevant chemical properties. Functional groups (e.g., hydroxyl or amine groups) are also 
associated with each atom. 
 

2. Neighbourhood Expansion: The algorithm examines the neighbours of each atom within a 3-bond 
radius (or more) and iteratively expands the environment around each atom, considering both the 
functional groups and specific chemical properties. 
 

3. Encoding Functional Groups: FCFP6 encodes the presence of functional groups around each atom. This 
allows the algorithm to represent not only the structural environment but also the chemical 
functionality of the molecule. 
 

4. Hashing: After encoding the functional group and connectivity information, the combined data is 
hashed into unique integer values that represent both structural and functional features within the 
local neighbourhood of each atom. 
 

5. Binary Vector Representation: The final output is a binary vector, where each bit corresponds to the 
presence (1) or absence (0) of a specific functional feature or substructure identified through the 
hashing process. 

This functional-class approach allows FCFP6 to provide a more functional context, capturing both structural and 
chemical features, which is particularly useful for tasks like predicting biological activity or chemical reactivity. 

4.6  Software name and version for descriptor generation  

FCFP6 fingerprints are generated by an open-source cheminformatics library: RDKit version 2024.09.2 
(https://www.rdkit.org)1 

4.7  Chemicals/Descriptors ratio  

✓  The ratio of the number of substances (3,344) to the number of descriptors (1,024) is 3.27. 
 

✓ In the current SVM model, the following parameters were fine-tuned using grid search: C = 0.1, gamma 
= 0.001, and kernel = 'linear'. These hyperparameters define how the model separates the data and 
manage the trade-off between margin maximization, error tolerance, and complexity of the decision 
boundary. 

 

5 Defining the applicability domain - OECD Principle 3  

5.1  Description of the applicability domain of the model 

The process follows a binary classification model, categorizing compounds into two classes: "In Domain" and 
"Out of Domain." The classification is determined by whether the query compound is sufficiently structurally 
similar to compounds in the training set, as measured by the Tanimoto similarity index, using the MACCS keys 

https://www.rdkit.org/
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molecular fingerprints. A K-Nearest Neighbours (KNN) approach is applied to identify analogues. The objective 
is to identify compounds that are sufficiently similar to the query compound, based on a predefined similarity 
threshold (e.g., Tanimoto similarity ≥ 0.7), with K representing the number of analogues. 

For a compound to be classified as "in domain," not only must its structural similarity to the analogues exceed 
the threshold, but its predicted value must also align with the predicted and experimental values of the 
analogues. This consistency between the predicted and experimental values across the query compound and its 
analogues ensures better reliability of the prediction and greater confidence in the model's applicability to the 
query compound (Figure 1). 

Key Features of MACCS Keys 

• Fixed Dictionary of Features: 

• MACCS Keys are based on a predefined set of 166 structural fragments, such as aromatic rings, 
halogens, and specific functional groups. Each key corresponds to the presence or absence of a 
particular feature in the molecule. 

• Binary Representation: 

• The molecule is represented as a binary vector of 166 bits: 

• A value of 1 indicates the presence of a specific structural feature. 

• A value of 0 indicates the absence of that feature. 

Optimized Parameters for Applicability Domain 

The applicability domain of the model is assessed based on two key parameters: 

1. Threshold (t): A Tanimoto similarity threshold of 0.7 is used to determine the structural similarity 
between the query compound and compounds in the training set. Compounds with a Tanimoto 
similarity equal to or greater than this threshold are considered structurally similar. 

2. K (Number of Neighbors): The model evaluates the query compound's analogues using a K-Nearest 
Neighbours (KNN) approach, where K represents the number of neighbours (1 ≤ K ≤ 3) used in the 
analysis. This helps identify the most similar compounds in the training set for comparison. 

By using these fixed parameters, the model ensures that only compounds with sufficient similarity to the training 
set are considered for predictions, providing a reliable assessment of the applicability domain. 

 

Binary Classification:  "In Domain" vs. "Out of Domain" 

 
Figure 1: Applicability Domain method 
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First, the algorithm calculates and identifies the number of analogues (K) from the query substance using 
Tanimoto similarity with a threshold ≥ 0.7, by comparing the structure of the query compound with those in the 
training set. 

 
Step 1: 

✓ If K = 0: No analogues are found. 
The query compound is classified as out of domain (i.e., outside the applicability domain of the model). 
 

Step 2: 
✓ If K > 0: Analogues are found. For each identified analogue, the model predicts values (e.g., 

y_analogue_pred1, y_analogue_pred2, ..., y_analogue_predn). 
 

• If the predicted values of the query compound are consistent with both the experimental and 
predicted values of the analogues, the query compound is classified as in domain. Specifically, this 
means: 

a. All analogues have the same experimental class. 
b. All analogues have the same predicted class. 
c. The predicted class of the query compound matches both the experimental and predicted 

classes of the analogues. 

• Otherwise, the query compound is classified as out of domain 
 

In this two-step process, the KNN approach with a threshold of ≥ 0.7 ensures that only compounds with sufficient 
structural similarity to those in the training set are considered for prediction. This not only improves the 
reliability of the model by ensuring the query compound is well-represented within its local neighbourhood but 
also takes into account the predicted values and experimental results of its analogues, further enhancing the 
confidence in the prediction. 

 
a) Fixed or probabil istic  boundaries 
The model uses fixed boundaries to assess applicability: 

1. Threshold (t): Tanimoto similarity threshold of 0.7. 
2. K: The number of neighbours (1=<K>=3) used to evaluate query compound analogues. 

 
b) Response domain  
In the developed model, the response domain is binary, with predictions classified as: 

• 1 (active): Indicates that the compound or query is associated with the predicted property or activity 
of interest, i.e. agonist and/or antagonist at the thyroid receptor. 

• 0 (inactive): Indicates the absence of the property or activity, i.e. not agonist and not antagonist up to 
the level of cytotoxicity. 
 
c) Descriptor domain  
As the descriptors are the FCFP6 fingerprints, which, as circular fingerprints, can be generated for any structure 
as far as the SMILES can be read by RDKit, the descriptor domain would only be limited by what types of SMILES 
can be read and interpreted correctly by RDKit. 
 
d) Structural fragment domain  
Following the method detailed in section 5.2, if a substance does not have any close analogues (Tanimoto less 
than the threshold of 0.7) in the training set, it is outside the structural fragment domain of the model. If the 
substance has close analogues, a maximum of 3 of the closest analogues are considered. If the predictions of 
the test substance, the predictions of the closest analogues and the experimental classes of the closest 
analogues are consistent with each other, then the substance is inside the structural fragment domain, 
otherwise it is outside of the structural fragment domain. 
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 The choice of FCFP6 for the SVM model and MACCS keys for the applicability domain (AD) is based on their 
respective strengths. FCFP6 provides fine granularity, ideal for classification, while MACCS keys, being more 
generic, are better suited for similarity calculations required for AD. MACCS keys yield more stable results for 
AD evaluation due to their simplified representation, reducing biases linked to specific molecular details. This 
compromise maximizes model performance while ensuring robust AD assessment. Each fingerprint is utilized 
according to its relevance to the targeted task. 
 
e) Mechanistic domain  
All molecular mechanisms leading to an agonistic or antagonistic response that is distinct from cytotoxicity 
signals are detected, and with a proper Hill curve or gain-loss curve would be classified identically by in cellulo 
assays that serve as basis for the datasets of this model. In most cases, the molecular mechanisms supposed to 
happen are the competitive binding of the molecule to the thyroid receptor hormone binding site, and then the 
bound ligand either activates the receptor thus engaging the cascade of events leading to the transcription of 
the reporter gene (agonism), or the bound ligand does not activate the receptor (thus blocking the receptor in 
its inactive state) and thus not engaging the cascade (antagonism). However, similar reporter gene signals can 
be obtained if the molecule binds to an allosteric binding pocket on the receptor, inducing or blocking a change 
of conformation of the protein. Other unspecific molecular interactions could be interpreted as agonism or 
antagonism, but most of these should have been ruled out by the cytotoxicity signal. Examples of unspecific 
interactions that would give both an antagonist signal and a cytotoxicity signal in the same range of 
concentrations are: 

• Absorption of light at the same wavelengths as the light produced by the luciferase activity9, 

• Inhibition of some step of the cascade of events leading to gene transcription or inhibition of gene 
transcription, 

• Unspecific adducts formation (covalent bonds) with proteins, which would denaturate both thyroid 
receptors and luciferase10, 

• Fast degradation of the luciferase substrate (One-Glo), 

• Inhibition of luciferase9. 
Since these mechanisms would be ruled out by the cytotoxicity signal11, they are out of the mechanistic domain. 
 
f) Metabolic domain, if relevant  
As this model predicts what would happen in an assay on a rat pituitary cell line, metabolic activity of these cells 
is intrinsically included in the model even if the exact metabolic cascade for each substance is not known. It is 
indeed probable that some substances have been tested active in these in vitro tests due to metabolic 
transformation and receptor binding of the metabolite, or conversely tested inactive because the metabolites 
do not bind to the receptors while the parent substance may have the ability to bind. 
 
g) Possible defined (graphical) expression of how the descriptor values of the chemicals in the 

training set are distributed in relation to the endpoint values predicted by the model.  
Not relevant. 
 

5.2  Method used to assess the applicabil ity domain  

The evaluation of a model's applicability domain (AD) aims to verify whether the AD method is sufficiently 
effective in detecting misclassified predictions by the SVM model. The confusion matrix provides insight into the 
performance of the AD method. 
The AD Confusion matrix is structured as follows:  
 

Table 3: Confusion matrix of AD 

                                            AD model 
SVM model 

Predicted X-Outliers (X-O) 
 

Predicted X-Inliers (X-I) 
 

True Y-Outliers (Y-O) True Outliers (TO) False Inliers (FI) 

True Y-Inliers (Y-I) False Outliers (FO) True Inliers (TI) 

Predicted X-Outliers (X-O): Instances predicted as outliers by the AD model, Predicted X-Inliers (X-I): Instances 
predicted as inliers by the AD model, True Y-Outliers (Y-O): Instances that are incorrectly predicted by the SVM 
model, True Y-Inliers (Y-I): Instances that are correctly predicted by the SVM model, True Inliers (TI): Instances 
that are correctly predicted by the SVM model and lie inside the applicability domain, True Outliers (TO): 
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Instances that are incorrectly predicted by the SVM model and lie outside the applicability domain, False Outliers 
(FO): Instances that are correctly predicted by the SVM model but incorrectly predicted as outliers by the AD 
model, False Inliers (FI): Instances that are incorrectly predicted by SVM but incorrectly predicted as inliers by 
the AD  model. 

To assess the AD method’s performance, the balanced accuracy metric has been used. The balanced accuracy 
formula is as follows: 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃𝑅 + 𝑇𝑁𝑅

2
 

 

• TPR (True Positive Rate): This is the proportion of actual outliers (Y-O) that are correctly identified as 
outliers by the AD model. It measures the AD model’s ability to detect outliers. 

• TNR (True Negative Rate): This is the proportion of actual inliers (Y-I) that are correctly identified as 
inliers by the AD model. It measures the AD model’s ability to identify inliers. 

It is also essential to take into account the rate of molecules excluded by the algorithm when evaluating the 
applicability domain (AD). However, it is crucial to maintain a balance between two important objectives: 

1. A low exclusion rate: This means that the model includes the majority of examples within its 
applicability domain, allowing the model to make predictions on a wide range of data, without overly 
restricting the set of usable examples. 

2. Excluding misclassified examples: At the same time, it is important for the model to appropriately 
exclude examples that are truly outside its applicability domain, meaning those that are misclassified 
by the SVM model. 

𝐸𝑥𝑐𝑙𝑢𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥𝑐𝑙𝑢𝑑𝑒𝑑 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠
⋅ 100 

 

5.3  Software name and version for applicability domain assessment  

The applicability domain assessment was conducted using Python with libraries such as RDKit (2024.09.2) for 
MACCS key fingerprints. 
 

5.4  Limits of applicabil ity  

A substance is fully within the applicability domain of the model if it fits within the descriptor and structural 
fragments domains of the model. The following situations can occur: 

1. Descriptor domain 
a. A substance is inside descriptor domain if the SMILES can be handled by RDKit. 
b. A substance is outside descriptor domain if the SMILES cannot be handled by RDKit. 

2. Structural fragment domain 
a. A substance is inside structural fragment domain if it has close analogues with fully consistent 

outcomes, as detailed in section 5.1.d and 5.2. 
b. A substance is outside structural fragment domain if it does not have any close analogues or if it 

does have close analogues, but with inconsistent outcomes, as detailed in section 5.1.d and 5.2. 
 
If the substance is outside descriptor or structural fragment domain, it is thus outside global applicability domain 
of the model. If it is inside descriptor domain and inside structural fragment domain, it is thus inside global 
applicability domain of the model. 
 

6 Defining goodness-of-fit and robustness (internal validation) - OECD principle 4 

6.1  Availabil ity of the training set  

The training set of the model is proprietary and has not been made publicly available. The training set of the 
model may be shared with regulatory authorities upon their request. 
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6.2  Available information for the training set  

CAS RN:  Yes (confidential business information) 
Chemical Name: Yes (confidential business information) 
SMILES: Yes (confidential business information) 
Formula: No 
INChI: No 
MOL file: No 
For substances from TOX21 dataset: DTXSID (identifier from comptox dashboard): Yes (confidential business 
information) 
For substances from BindingDB dataset: PubChem CID (identifier from PubChem database): Yes (confidential 
business information) 
 

6.3  Data for each descriptor variable for the training set  

Descriptors are molecular fingerprints, which are stored in a file internally at KREATiS, but not made publicly 
available since the dataset is proprietary. However, KREATiS undertakes to provide supplementary information 
to sponsors or regulatory authorities upon request to demonstrate compliance of our QSARs with good practice. 
 

6.4  Data for the dependent variable for the training set  

The training set of the model is proprietary and has not been made publicly available yet.  
Data available for substances from TOX21 dataset: outcome of the agonist assay, outcome of the antagonist 
assay, outcome of the cytotoxicity assay, “1” (active) or “0” (inactive) assignment for thyroid receptor 
interaction.  
Data available for substances from BindingDB dataset: “1” (active) assignment for thyroid receptor interaction 
(only actives available from this source). 
Data can be provided to regulatory authorities upon request. 
 

6.5  Other information about the training set  

None. 
 

6.6  Pre-processing of data before modelling 

Agonist endpoint and antagonist endpoint were regrouped as the unique “active” class for the purpose of this 
model, since this distinction was not available from BindingDB data, though it was available from TOX21 data. 
“Inactive” class was assigned if there was absence of both agonist and antagonist activity up to the cytotoxicity 
limit. 
In case of conflicting evidence of positivity between TOX21 data and BindingDB data for a same substance, the 
substance was removed from the dataset. 
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6.7  Statist ics for goodness -of-fit  

A confusion matrix is plotted below, mapping the number of true and false positives and negatives from the 
training set of the model: 
 

 
Figure 2: Confusion matrix for the training set 

 
The confusion matrix (Figure 2) shows that the model is extremely effective. It correctly predicts all examples of 
the majority class (3,193/3,193) while also efficiently capturing the minority class, with only one false negative 
out of 151 instances (150 true positives and 1 false negative). This indicates an exceptional performance, 
particularly in the context of a highly imbalanced dataset. The statistics (Table 4) for the minority class reinforce 
this observation. With a sensitivity of 99.34% and precision of 100%, the model identifies nearly all examples of 
the minority class (class 1) with high precision, despite its low proportion in the dataset (4.52%). Additionally, 
with a specificity of 100%, it perfectly classifies all examples of the majority class (class 0), avoiding any false 
positives. These results demonstrate that the model maintains high performance on both classes, even in a 
highly imbalanced data context, by balancing the needs of identifying minority-class instances while maintaining 
error-free classification of the majority class. 

In comparison, a naïve model that always predicts the majority class (class 0) would achieve an accuracy of 
95.48%, corresponding to the proportion of this class in the dataset. The present model, with an accuracy of 
99.97%, far exceeds this threshold. This proves that it effectively captures examples of the minority class, a task 
that is typically challenging in such scenarios due to the inherent imbalance. 

The balanced accuracy of 99.67% further emphasizes the model’s ability to handle class imbalance. Unlike 
standard accuracy, which may be misleading in imbalanced datasets, balanced accuracy gives equal importance 
to the performance on both classes. The high balanced accuracy confirms that the model is robust and fair in its 
treatment of the minority class while maintaining its effectiveness for the majority class. 

Moreover, the AUC-ROC (99.97%) (Figure 3a) and AUC-PR (99.69%) (Figure 3b) metrics underline the model’s 
outstanding performance. The AUC-ROC score highlights the model’s ability to distinguish between classes 
across all decision thresholds, with a near-perfect value indicating excellent discriminative power. Meanwhile, 
the AUC-PR score, which is particularly informative in imbalanced datasets, shows the precision-recall trade-off, 
confirming that the model excels in identifying the minority class without compromising precision. 

In summary, these results highlight several key points: 

• The model effectively addresses the challenges posed by class imbalance, achieving a very high 
sensitivity (99.34%) for the minority class and perfect specificity (100%) for the majority class. 

• It outperforms a naïve model by a significant margin, with a high overall accuracy (99.97%) and 
balanced accuracy (99.67%). 

• The exceptional values for AUC-ROC and AUC-PR demonstrate the model's reliability in distinguishing 
and correctly classifying both classes. 
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These findings demonstrate that the present model is both well-balanced and highly effective across all classes, 
which is a notable achievement in problems involving imbalanced datasets. 

Table 4: Statistics for goodness-of-fit 

Statistics Values 

Concordance or Accuracy (Non-error Rate) 99.97% 

Error Rate 0.03% 

NO-MODEL Error Rate, NOMER% 4.52% 

Prior probability of a class 95.48% 

Prior proportional probability of a class 4.52% 

Sensitivity of a class 1 (Active) 99.34% 

Precision of a class 1 (Active) 100.00% 

F1-score of a class 1 (Active) 99.67% 

Precision of a class 0 (Inactive) 99.97% 

Specificity of a class 0 (Inactive) 100% 

F1-score of a class 0 (Inactive) 99.98% 

Misclassification risk 0.03% 

Balanced accuracy 99.67% 

auc_roc 99.97% (Figure 3a) 

auc_pr 99.69% (Figure 3b) 

 
 
 

 
Figure 3: AUC-ROC (a) and AUC-PR (b) for the training set 

 

6.8  Robustness - Statistics obtained by leave-one-out cross-validation 

This is not applicable. 
 

6.9  Robustness - Statistics obtained by leave-many-out cross-validation 

 
A leave-many-out cross-validation of the model has been performed, by dividing the training set into 5 folds (k-
folds cross validation, with k = 5). This dataset splitting has been done the same way as for the splitting of 
training, validation and test sets, ensuring homogeneity across the 5 folds. 
The statistics obtained for each fold and the mean of all folds are presented in the tables below (Tables 5a-g). 
 
 
 
 

a b 
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Tables 5a-g: Cross validation statistics 

a. Fold 1 

Class Precision Sensitivity F1-score Number of substances 

0 (inactive) 0.9905 0.9905 0.9905 629 

1 (active) 0.7778 0.7778 0.7778 27 

Accuracy 0.9817    
b. Fold 2 

Class Precision Sensitivity F1-score Number of substances 

0 (inactive) 0.9829 0.9953 0.9891 637 

1 (active) 0.8800 0.6667 0.7586 33 

Accuracy 0.9791    
c. Fold 3 

Class Precision Sensitivity F1-score Number of substances 

0 (inactive) 0.9889 0.9952 0.9920 625 

1 (active) 0.8929 0.7813 0.8333 32 

Accuracy 0.9848    
d. Fold 4 

Class Precision Sensitivity F1-score Number of substances 

0 (inactive) 0.9985 0.9863 0.9923 656 

1 (active) 0.7500 0.9643 0.8438 28 

Accuracy 0.9854    
e. Fold 5 

Class Precision Sensitivity F1-score Number of substances 

0 (inactive) 0.9938 0.9985 0.9961 646 

1 (active) 0.9643 0.8710 0.9153 31 

Accuracy 0.9926    
f. Mean of the 5 folds 

Class Precision Sensitivity F1-score 

0 (inactive) 0.9909 0.9931 0.9920 

1 (active) 0.8530 0.8122 0.8257 

Accuracy 0.9847   
g. Standard deviation of each statistical parameter along the 5 folds 

Class Precision Sensitivity F1-score 

0 (inactive) 0.0052 0.0043 0.0024 

1 (active) 0.0787 0.0999 0.0551 

Accuracy 0.0051   
 
Class 0 (inactive) shows stable performance, with high precision, sensitivity, and F1 scores, and a low standard 
deviation, indicating good consistency across the different folds. 
 
However, class 1 (active) shows weaker performance, with lower precision, sensitivity, and F1-score compared 
to class 0. The standard deviation is higher for class 1 compared to class 0, which suggests that the classification 
of this class is more variable from one fold to another. This could indicate difficulty in correctly identifying this 
class in certain folds. This phenomenon could be due both to the class imbalance and the presence of a large 
number of singletons, which may have affected the data splitting method. 
 

6.10  Robustness - Statistics obtained by Y-scrambling 

This is not applicable. 

6.11  Robustness - Statistics obtained by bootstrap  

This is not applicable. 
 

6.12  Robustness - Statistics obtained by other methods  

None. 
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7 Defining predictivity (External validation) - OECD Principle 4  

7.1  Availabil ity of the external validation set  

The external validation set of the model is proprietary and has not been made publicly available. The external 
validation set of the model may be shared with regulatory authorities upon their request. 
 

7.2  Available information for the external validation set  

CAS RN:  Yes (confidential business information) 
Chemical Name: Yes (confidential business information) 
SMILES: Yes (confidential business information) 
Formula: No 
INChI: No 
MOL file: No 
For substances from TOX21 dataset: DTXSID (identifier from comptox dashboard): Yes (confidential business 
information) 
For substances from BindingDB dataset: PubChem CID (identifier from PubChem database): Yes (confidential 
business information) 
 

7.3  Data for each descriptor variable for the external validation set  

Descriptors are molecular fingerprints, which are stored in a file internally at KREATiS, but not made publicly 
available since the dataset is proprietary. However, KREATiS undertakes to provide supplementary information 
to sponsors or regulatory authorities upon request to demonstrate compliance of our QSARs with good practice. 
 

7.4  Data for the dependent variable for the external validation set  

The external validation set of the model is proprietary and has not been made publicly available yet.  
Data available for substances from TOX21 dataset: outcome of the agonist assay, outcome of the antagonist 
assay, outcome of the cytotoxicity assay, “1” (active) or “0” (inactive) assignment for thyroid receptor 
interaction.  
Data available for substances from BindingDB dataset: “1” (active) assignment for thyroid receptor interaction 
(only actives available from this source). 
Data can be provided to regulatory authorities upon request. 
 

7.5  Other information about the external validation set  

None. 
 

7.6  Experimental design of test set  

As explained in section 4.2, the reference dataset has been split into a training validation and external validation 
set (test set = external validation set), so that structural diversity and active/inactive proportions are 
homogenous between these different subsets. As such, all data in the external validation set are not present in 
the training set of the model. 
 

7.7  Predictivity - Statistics obtained by external validation  

1. Statistics obtained before applying Applicability Domain algorithm 

Before the application of the applicability domain (AD) algorithm, the model demonstrated excellent prediction 

capability for the majority class (Inactive), with 1,724 true positives and only 7 false positives (Figure 4). This 

reflects a high level of reliability for this class. However, the minority class (Active) showed more nuanced results. 

While the sensitivity was relatively high at 83.95%, with 68 true positives out of 81, the model still had 13 false 

negatives, indicating difficulties in correctly identifying certain instances of this class (Table 6). These results 

highlight the model's limitations, particularly due to class imbalance, which is a common challenge in this type 

of problem. 
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Figure 4: Confusion Matrix for the external validation set before applying AD 

 
Table 6: Statistics for external validation before applying AD 

Statistics Values 

Concordance or Accuracy (Non-error Rate) 98.90% 

Error Rate 1.10% 

Sensitivity of a class 1 (Active) 83.95% 

Precision of a class 1 (Active) 90.67% 

F1-score of a class 1 (Active) 87.12% 

Precision of a class 0 (Inactive) 99.25% 

Specificity of a class 0 (Inactive) 99.60% 

F1-score of a class 0 (Inactive) 99.42% 

Misclassification risk 1.10% 

Balanced accuracy 91.77% 

auc_roc 93.84% (Figure 5a) 

auc_pr 88.49% (Figure 5b) 

 

 
Figure 5: AUC-ROC (a) and AUC-PR (b) for the external validation set before applying AD 

 
 

a b 
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2. Statistics obtained after applying Applicability Domain algorithm 

The application of the AD improves these results by filtering out misclassified examples. The AD identifies certain 
cases as outliers, categorized into a distinct group, "Predicted X-Outliers (X-O):" (see section 5.1 and 5.2). Among 
these cases, 238 molecules are deemed out of domain. However, these molecules had been correctly classified 
by the initial model, suggesting that, although they are seen as uncertain by the AD, their initial classification 
remains reliable. This illustrates the conservative role of the AD, which excludes examples with higher 
uncertainty to ensure better overall robustness of the model (Figure 6). 

The rate of molecules excluded by the algorithm is approximately 13.13%. This proportion of excluded examples 
highlights the importance of the AD in contexts where prediction reliability is crucial. However, this exclusion 
raises the question of the balance to maintain between reducing prediction errors and preserving a sufficient 
number of examples for meaningful classification. This exclusion phenomenon can be broken down into two 
distinct steps: 

First step: 191 molecules excluded: These molecules are singletons, meaning they don’t have any close analogue 

in the training set. They do not share enough characteristics with other molecules and are therefore considered 

out of domain. Second step: 61 molecules excluded: These molecules are poorly represented locally, which 

leads to uncertain predictions. 

The algorithm acts conservatively by excluding these examples to enhance the reliability and robustness of the 

predictions. 

 

 

Figure 6: Confusion Matrix for the assessment of AD algorithm 

After the full application of the AD, the model's performance improves significantly. The compounds that were 

out of domain were dropped, and the statistics were recalculated. The majority class (Inactive) maintains an 

exceptional specificity of 99.93%, with 1,496 true negatives and only 1 false positive (Figure 7). The minority 

class (Active), on the other hand, shows a notable improvement, with a sensitivity of 92.06% (58 true positives) 

and a reduction of false negatives to just 5. These results demonstrate that the model has been improved after 

the application of the AD and is now better able to correctly identify the minority class while maintaining very 

high precision. 

The balanced accuracy, reflecting the balance between the two classes, also improves, rising from 91.77% to 

96%, confirming an overall performance boost (Table 7). 
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Figure 7: Confusion Matrix for the external validation set after applying AD 

 
Table 7: Statistics for External Validation after applying AD 

Statistics Values 

Concordance or Accuracy (Non-error Rate) 99.62% 

Error Rate 0.38% 

Sensitivity of a class 1 (Active) 92.06% 

Precision of a class 1 (Active) 98.31% 

F1-score of a class 1 (Active) 95% 

Precision of a class 0 (Inactive) 99.67% 

Specificity of a class 0 (Inactive) 99.93% 

F1-score of a class 0 (Inactive) 100% 

Misclassification risk 0.38% 

Balanced accuracy 95.6% 

In summary, the application of the AD has an undeniable positive impact on the model's performance. It 
enhances the handling of class imbalance while effectively filtering out out-of-domain examples, thereby 
strengthening the model's robustness and overall efficiency. This improvement is particularly noticeable in the 
classification of the minority class. 
 

7.8  Predictivity - Assessment of the external validation set  

To ensure the representativity of the external validation set and its compatibility with the training set, multiple 
statistical and visual analyses were conducted. These tests aim to verify that the two datasets share similar 
descriptor distributions, minimizing potential biases and ensuring robust model evaluation. The following 
sections summarize the key findings. 

 
✓ Kolmogorov-Smirnov Test (KS-Test): 

 The KS-Test was applied to compare the distribution of each descriptor between the training and 
external validation sets: 

• Total number of descriptors: N=1024 

• Descriptors with statistically significant differences (ρ < 0.05): 1 

This result suggests that almost all descriptors share similar distributions between the two 

 datasets, indicating overall representativity. 
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✓ Descriptor Exclusivity: 

• Descriptors present only in the training set: 0 

• Descriptors present only in the external validation set: 0 

 These findings confirm that both datasets share a common descriptor space.  

 

✓ Average Wasserstein Distance: 

The mean Wasserstein distance between the descriptor distributions of the training and external 

validation sets is 0.0034. This low value highlights a high degree of similarity between the two 

datasets. 

 

✓ Pearson Correlation: 

Overall correlation between descriptor proportions: 0.998. The Pearson correlation of 0.998 

between the descriptor proportions indicates an almost perfect similarity between the 

training and external validation sets, ensuring good model generalization. 

 

To further explore the representativity of the two datasets, additional visual analyses were conducted:  

• Descriptor Proportions: 

• The proportions of the most represented descriptors in the training and external validation sets are 

visualized using a histogram. This graphical representation allows for a clear comparison of how these 

descriptors are distributed across the two datasets (Figure 8). 

• The histograms of descriptor distributions reveal comparable proportions between the training and 
external validation sets, indicating a high level of consistency. Such alignment is crucial for ensuring 
that models trained on the training set generalize well to the external validation set, minimizing 
potential biases caused by distributional differences. 

 
Figure 8: Proportions of the most represented descriptors (Training vs External validation) 
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• t-SNE Projection:  

A t-Distributed Stochastic Neighbour Embedding (t-SNE)12 projection was used to visualize the 

clustering of molecules in the training and external validation sets. The results show significant 

overlap between the two datasets, supporting their mutual representativity (Figure 9). 

 
Figure 9: Visualisation of Training and External validation set by t-SNE projection 

 
The statistical and visual analyses confirm that the training and external validation sets are well-aligned in 

terms of descriptor distributions. This minimizes the risk of systemic bias and ensures that model performance 

on the external validation set is reflective of its behaviour on the training set. 

 

7.9  Comments on the external validation of the approach 

None. 
 

8 Providing a mechanistic interpretation - OECD Principle 5  

8.1  Mechanistic basis of the model 

No mechanistic interpretation of the descriptors (structural features) and algorithm were investigated. 
 

8.2  A priori or a posteriori mechanistic interpretation  

No mechanistic interpretation. 
 

8.3  Other information about the mechanistic interpretation   

None. 
 

9 Miscellaneous information 

9.1  Comments  

None. 
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9.3  Supporting information  

Training set(s):  
Proprietary. All the queries must be directly addressed to KREATiS SAS.  
 
External validation set(s):  
Proprietary. All the queries must be directly addressed to KREATiS SAS.  
 
Supporting information: 
None. 
 

10 Summary (KREATiS QMRF Database)  

10.1  QMRF number (For KREATiS internal records only)  

KTS/QMRF/ETR/01 

10.2  Publication date  

17 January 2025 

10.3  Keywords 

iSafeRat®; Endocrine modality; thyroid receptors; SVM. 
 

10.4  Comments  

None. 


